#### **3D Fingerprint Phantoms**

Sunpreet S. Arora<sup>1</sup>, Kai Cao<sup>1</sup>, Anil K. Jain<sup>1</sup> and Nicholas G. Paulter Jr.<sup>2</sup> <sup>1</sup>Michigan State University <sup>2</sup>National Institute of Standards and Technology

This research is supported by a grant from the NIST Measurement Science Program

22nd International Conference on Pattern Recognition (ICPR), 2014, Stockholm, Sweden

## Goal

• Build 3D fingerprint phantoms/targets to calibrate fingerprint readers and evaluate feature extractors and matchers



## **Imaging Phantoms**

• Specially designed artifacts with known properties to evaluate the performance of imaging devices



Torso Phantom to calibrate CT Scan machines https://www.kyotokagaku.com/products/detail03/ph-4.html



"Phannie", a phantom to calibrate MRI machines developed at NIST http://www.nist.gov/pml/electromagnetics/phanni e\_051110.cfm

### **Fingerprint Phantoms**

 2D/3D artifacts recommended to measure geometric accuracy, resolution and spatial frequency response of imaging devices [1] [2]



#### **Ronchi target**

Sine wave target

**Bar target** 

[1] Normal B. Nill, "Test procedures for verifying image quality requirements for personal identity verification (PIV) single finger capture devices." MITRE Technical Report MTR 060170, 2006.

[2] Norman B. Nill, "Test procedures for verifying IAFIS image quality requirements for fingerprint scanners and printers V 1.4" MITRE Technical Report MTR05B0016R7, 2013.

## **Our Contributions**

- Build 3D phantoms to calibrate optical fingerprint sensors
- Project different 2D test patterns onto 3D finger surface
- Use COTS 3D printers to fabricate 3D phantoms; the hardness and elasticity of fabrication material is similar to that of human fingers

#### **2D Calibration Patterns**

• 2D patterns with known characteristics



Vertical bars (ridge spacing = 10 pixels)



Concentric circles (ridge spacing = 10 pixels)

Synthetic fingerprint with known features

## **3D Fingerprint Phantoms**

3D electronic and physical artifacts of known characteristics



Synti**Clettieiźidgielipinistes**with (ridg**lenspæcifig**a**tul@p**ixels)



## Preprocessing 3D Finger Surface

- Align the finger surface
- Surface triangulation
- Surface re-meshing [3]
- Regularize the finger surface [4]
- Separate front and back

[3] G. Peyré, and L.D. Cohen. "Geodesic remeshing using front propagation." International Journal of Computer Vision, 2006
[4] C. Loop, "Smooth subdivision surfaces based on triangles.", 1987



**3D finger surface** 

#### Mapping 2D fingerprint to 3D surface

- 3D to 2D projection [5] v
- Translation, rotation and flip correction w.r.t reference coordinates
- Make the surface dense
- Determine one-one correspondence

[5] J. B. Tenenbaum, V. de Silva, J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction", Science, 2000

9

## Engraving ridges and valleys

- Compute the surface normals
- Displace the surface along the surface normals
- Displacement proportional to mapped intensity value



## Postprocessing 3D finger surface

- Combine front and back
- Create inner surface
- Stitch outer and inner surfaces to create a watertight solid surface



**3D finger surface** 

#### **3D Fingerprint Phantom**



2D synthetic fingerprint image with known features





Generic 3D finger surface

#### **3D** Fingerprint Phantoms



2D fingerprint image



## **3D** Printing

- Phantoms fabricated using a 3D printer (X & Y res: 600 dpi, Z res: 1600 dpi) using two different materials
- Printing material based on finger skin properties

| Property                | Human skin<br>[6] [7] | Material A | Material B |
|-------------------------|-----------------------|------------|------------|
| Shore A hardness        | 20-41                 | 26-28      | 35-40      |
| Tensile strength (MPa)  | 5-30                  | 0.8-1.5    | 1.3-1.8    |
| Elongation at Break (%) | 35-115                | 170-220    | 110-130    |

[6] C. Edwards and R. Marks, "Evaluation of biomechanical properties of human skin" *Clinics in dermatology*, 2005
 [7] V. Falanga and B. Bucalo, "Use of a durometer to assess skin hardness" *J. American Academy of Dermatology*, 1993 14

#### Experiments

How good is the mapping from 2D to 3D?

 Match the original 2D fingerprint image to impressions of 3D phantom

- Are multiple impressions of the 3D phantom consistent (small intra-class variability)?
- Calibrate optical fingerprint sensors using 3D phantoms

# Evaluation of 2D to 3D Mapping

• Match captured impressions of 3D phantom to the original 2D fingerprint image

![](_page_15_Figure_2.jpeg)

Original 2D fingerprint image

![](_page_15_Picture_4.jpeg)

Match score: 180; threshold at FAR=0.01% is 33

Image of 3D phantom

#### Intra-class Variability of Impressions

• Match different impressions of the same 3D phantom

![](_page_16_Picture_2.jpeg)

Match score: 870; threshold at FAR=0.01% is 33

Impression 1 of phantom usingthe E000 pppisensor Impression 2 of phantom usingthe 19000 pppissensor

#### **Calibration Experiments**

- Experimental Protocol
  - Capture 10 different impressions each of the three artifacts having pre-specified test patterns
  - Measure the mean and variance of ridge spacings

![](_page_17_Figure_4.jpeg)

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

#### 2D Images of 3D Phantoms

![](_page_18_Picture_1.jpeg)

500 ppi sensor

1000 ppi sensor

19

#### **Calibration Results**

| Test pattern       | 500 ppi sensor       | 1000 ppi sensor      |
|--------------------|----------------------|----------------------|
| Horizontal bars    | Mu = 9.04, Sd = 0.06 | Mu = 9.05, Sd = 0.05 |
| Vertical bars      | Mu = 9.51, Sd = 0.23 | Mu = 9.46, Sd = 0.09 |
| Concentric circles | Mu = 9.80, Sd = 0.31 | Mu =9.59, Sd = 0.08  |

Mean (Mu) and Std. deviation (Sd) ridge spacing computed in the images acquired using the two sensors. (test pattern ridge spacing = 10 pixels)

#### Note:

• To compensate for the distortion during 2D to 3D projection, we use the Euclidean to Geodesic distance ratio to adjust ridge spacing

#### **Conclusions and Future Work**

- We have devised a method to create 3D fingerprint phantoms by (i) projecting any 2D test pattern onto a generic 3D finger surface, and (ii) fabricating using a 3D printer
- 3D fingerprint phantoms can be used for calibrating fingerprint sensors, and evaluating feature extractors and matchers
- Ongoing Work: (i) improve the fingerprint phantom fabrication process, (ii) study fingerprint distortion during the acquisition process